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Abstract. Kinematics of more than 5000 coronal mass ejections (CMEs) measured in the distance range 2–30 solar radii is
investigated. A distinct anticorrelation between the acceleration, a, and the velocity, v, is found. In the linear form, it can be
represented as a = −k1(v − v0), where v0 = 400 km s−1, i.e., most of CMEs faster than 400 km s−1 decelerate, whereas slower
ones generally accelerate.
After grouping CMEs into the width and mean-distance bins, it was found that the slope k1 depends on these two parameters: k1

is smaller for CMEs of larger width and mean-distance. Furthermore, the obtained CME subsets show distinct quadratic-form
correlations, of the form a = −k2(v − v0)|v − v0|. The value of k2 decreases with increasing distance and width, whereas v0
increases with the distance and is systematically larger than the slow solar wind speed by 100–200 km s−1.
The acceleration-velocity relationship is interpreted as a consequence of the aerodynamic drag. The excess of v0 over the solar
wind speed is explained assuming that in a certain fraction of events the propelling force is still acting in the considered distance
range. In most events the inferred propelling force acceleration at 10 solar radii ranges between aL = 0 and 10 m s−2, being on
average smaller at larger distances. However, there are also events that show aL > 50 m s−2, as well as events indicating aL < 0.
Implications for the interplanetary motion of CMEs are discussed, emphasizing the prediction of the 1 a.u. arrival time.

Key words. magnetohydrodynamics (MHD) – Sun: corona – Sun: coronal mass ejections (CMEs) –
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1. Introduction

Coronal mass ejection (CME) is a process in which the free
energy contained in the coronal non-potential magnetic field is
released in the form of kinetic and potential energy of ejected
plasma (Forbes 2000). In large eruptions the magnetic flux of
some 1023 Wb is expelled into the interplanetary space at ve-
locities of the order of 1000 km s−1, carrying along 1013 kg of
coronal plasma (Gosling 1990; Webb et al. 1994).

The non-potential field of the erupting structure carries the
electric current, I, providing the Lorentz force that drives the
eruption. The free energy of any current-carrying system can
most generally be expressed as W = LI2, where L is the in-
ductance of the structure (Jackson 1975; Landau et al. 1984;
for a detailed discussion of the MHD aspect see Chen & Krall
2002).

The inductance depends on the size of the current-carrying
structure, implying that during the eruption L increases (see,

� Appendices A and B are only available in electronic form at
http://www.edpsciences.org

e.g., Anzer 1978; Vršnak 1990; Chen 1996, and references
therein). On the other hand, L is related to the magnetic flux Φ
associated with the current, Φ = LI. Since it can be taken ap-
proximately that the erupting magnetic flux Φ does not change
much, this implies that the current has to decrease as the erupt-
ing structure enlarges, I ∝ L−1. Because of the decreasing cur-
rent, the Lorentz force weakens, eventually ceasing at large he-
liocentric distances.

Note that the condition Φ ≈ const. could be violated in
a limited time interval due to reconnection below the erupting
flux tube (e.g., Vršank 1990; Lin & Forbes 2000; see also Wang
et al. 2003), or by an injection of the poloidal flux from the
subphotospheric layers (e.g., Chen 1996). The supply of the
poloidal flux prolongs the acceleration phase of the eruption.

The free energy of the system W = LI2 ∝ L−1 de-
creases, and if only the Lorentz force and gravity are consid-
ered, it should be directly transformed into kinetic and po-
tential energy. However, CMEs travel through the ambient
coronal/interplanetary (C/IP) plasma, causing the emission of
MHD waves and appearance of the “aerodynamic” drag. The
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drag can have complex characteristics depending on the orien-
tation of the ambient magnetic field (Vandas et al. 1995, 1996;
Cargill et al. 1996; Cargill & Schmidt 2002), but still can be
expressed as:

ad = −γ2(v − w)|v − w|, (1)

where v is the speed of the plasmoid moving in the medium
flowing at velocity w (Cargill et al. 1996). The parameter γ2

depends on the cross-section (A) and the mass (m) of the plas-
moid, and on the density (ρo) of the ambient plasma (γ2 ∝
Aρo/m).

The interaction of CMEs and the solar wind plasma is
under favourable conditions “visualized” by the dekameter-
to-kilometer wavelength type II radio bursts. Such bursts are
excited at the C/IP shocks that are driven by CMEs (e.g.,
Gopalswamy et al. 2001a).

As the Lorentz force and gravity decrease, the drag could
become a dominant force. Indeed, Gopalswamy et al. (2000)
inferred that in the IP space the CMEs that are faster than the
solar wind decelerate, whereas the slower ones are additionally
accelerated by the wind. The net acceleration was found to be
anticorrelated with the CME speed; the issue was elaborated in
a subsequent paper (Goplaswamy et al. 2001b) where the pro-
jection effects were partly eliminated and different distances
from the Sun were considered. On the other hand, Gopalswamy
et al. (2001a) analysed the relationship between acceleration
and speed for fast (v > 900 km s−1) and wide (φ > 60◦) CMEs
associated with type II bursts, and found that in the upper
corona faster CMEs show stronger deceleration. A similar re-
sult was obtained by Vršnak (2001a) who in addition showed
that the deceleration rate statistically depends not only on the
speed of ejecta, but also on the height. An empirical scaling law
was established, describing the decrease of the average drag
with increasing radial distance, which provides a better pre-
diction of the Sun-Earth transit time (Vršnak & Gopalswamy
2002).

In the papers by Vršnak (2001a) and Gopalswamy et al.
(2001b) the acceleration/speed relationship (hereinafter a–v re-
lationship) was studied on relatively small samples of events
of specific characteristics. The former one embraced only fast
events showing an exponential-like decay of speed, whereas the
second one included only fast and wide CMEs associated with
type II bursts. For this reason, Vršnak et al. (2003) and Ruždjak
et al. (2004) extended the investigation of the a–v relationship
to a large sample of more than 5000 CMEs observed by the
Large Angle and Spectrometric Coronagraph (LASCO) aboard
the Solar and Heliospheric Observatory (Brueckner et al. 1995)
in the period 1996–2001. Again, the data showed a distinct
a–v anticorrelation.

In this paper we perform a detailed analysis of the a–v rela-
tionship utilizing the same data set as in the preliminary reports
by Vršnak et al. (2003) and Ruždjak et al. (2004). The aim of
the paper is two-fold. Firstly, it is an extension of previous sta-
tistical analyses of kinematics of large samples of CMEs (e.g.
Hundhausen 1993; Hundhausen et al. 1994; Harrison 1995;
St. Cyr et al. 1999, 2000; Moon et al. 2002; Gopalswamy
et al. 2003, and references therein). Secondly, the obtained em-
pirical relationships are used as an insight into the physical

background of CME dynamics in the near-Sun IP space. Both
of these aspects could be essential in advancing the prediction
of the CME arrival time at the Earth (Gopalswamy 2002).

The paper is organized as follows: the data set, the data
sampling, and the parameters used are described in Sect. 2.
Supplementary information concerning the statistical proper-
ties of the data set are shown in Appendix A. In Sects. 3 and 4
we present the empirical results, leaving explanations regard-
ing the procedure for Appendix B. The results are discussed
and interpreted in Sect. 5 and summarized in Sect. 6.

2. The data

The following analysis is based on the CME distance-
time measurements, R(t), where R = r/r� is the plane-
of-sky heliocentric distance r normalized with respect
to the solar radius r�. The measurements are provided
in the LASCO CME catalogue (Yashiro and Michalek,
http://cdaw.gsfc.nasa.gov/CME_list/). We utilize the
data from 5012 events recorded in the 2 < R < 30 range
from 1996 to 2001. From this sample we extracted two sub-
samples: one consists of events which had been measured in
n ≥ 4 instants, and the other with n ≥ 6 (hereinafter n4-set and
n6-set, containing 4609 and 3697 events, respectively). Such a
sampling was applied to check how the accuracy of the accel-
eration and velocity estimates affects the results. Demanding a
still larger n would certainly improve the accuracy of individ-
ual kinematic data, but it would lead to a systematic exclusion
of the fastest CMEs due to the limited image acquisition rate of
the LASCO instruments.

The basic parameters treated in the following are:

– Rb and Re – the smallest and the largest distance at which
the CME was measured,

– ∆R = Re − Rb and ∆t = te − tb – the corresponding distance
and time intervals,

– Rm = (Rb + Re)/2 – mean radial distance for a given CME,
– vm – mean velocity obtained using the linear fit to the

R(t) data, and the corresponding error Mv,
– am – mean acceleration received from the 2nd degree poly-

nomial fit, and the corresponding error Ma,
– vb and ve – the velocities at Rb and Re evaluated from the

2nd degree polynomial fit,
– v3 and v5 – CME velocities at R = 3 and R = 5 evaluated

from the 2nd degree polynomial fit,
– φ – angular width of CME, measured at the height beyond

which it remains more or less constant.

Statistical properties of the data set are given in Appendix A,
where we show the distribution of Rb, ∆R, Rm, φ, vm, and am.
There is a weak positive correlation between the parameters
Rm, vm, and φ (also shown in Appendix A), whereas the accel-
eration is not correlated with the mean-distance or width.

In the preliminary reports by Vršnak et al. (2003) and
Ruždjak et al. (2004) it was shown that CME accelerations and
velocities are anticorrelated, indicating that the aerodynamic
drag plays an important role in the CME dynamics. Since the
drag acceleration depends on the ambient solar wind speed
and density, as well as on the CME dimensions and density,
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it would be ideal if all events were recorded in the same range
of heights. However, mean distances are found in the range
from Rm = 3 to 20 (see Fig. 10 in Appendix A). Therefore, it is
instructive to consider the velocity “normalized” to a particular
height so that the ambient wind speed and density are the same
for all events. Since a vast majority of events were measured
from Rb ≈ 3, we included in the analysis the velocity v3 as a
kind of “initial velocity” at a fixed (plane-of-sky) height. Other
reasons for using v3 are explained in more detail and discussed
in Sect. 5.1 and Appendix B.

The velocity v5 represents (statistically) the velocity at R
somewhere in between the “initial distance” R = 3 and the av-
erage value of mean-distances, Rm, which amounts to Rm ≈ 9
(see Appendix A). We also considered v(Rm) obtained from the
2nd degree polynomial fit, but since v(Rm) ≈ vm the difference
in the outcome for v(Rm) and vm turned out to be statistically
insignificant. Hereafter, v3, v5, vm, and v(Rm) are denoted as
“velocity options”.

An important consequence of employing v3 is that the
events with am > 0 for which the fitted R(t) parabolas do
not have an intercept with the R = 3 level dropped out from
the analysed sample. Similarly, considering v5 one excludes
the events that show a large deceleration and are observed
only across a relatively small range of heights, so that the fit-
ted R(t) parabola has no intercept with R = 5. Such a “silent
elimination” additionally filters out unreliable/odd data. In this
way we got four subsamples which we denote n4v3-subset,
n6v3-subset, n4v5-subset, and n6v5-subset, containing 4463,
3581, 4570, and 3681 events, respectively.

3. Raw a–v relationship

In Fig. 1 we present the general relationship between CME ac-
celerations and velocities. The four presented graphs are cho-
sen to show basic characteristics of the a–v correlation, and var-
ious statistical aspects of the relationship. Different subsets are
chosen to illustrate that the general outcome is qualitatively the
same, whatever sampling and velocity options are employed.

Since it is impossible to transparently present several thou-
sands of data points in a single graph, we first present in Fig. 1a
the dependence am(vm) by showing a 2-dimensional distribu-
tion of data. An example of the “all-data” am(vm) graph, analo-
gous to the v3(am) graph that is shown in Fig. 1b, can be found
in the paper by Moon et al. (2002), or Ruždjak et al. (2004).

The complete n4v3-subset data are shown in the
v3(am) graph in Fig. 1b, and in Fig. 1c we show the correspond-
ing bin-averaged values with the standard deviations (for mean
errors M = σ/

√
N see Vršnak et al. 2003). The fit in Fig. 1c is

obtained by attributing equal weights to all bin-averaged values
in order to eliminate the effect of data grouping. The quadratic
fit of the form am = −k2(v − v0)|v − v0| is illustrated in Fig. 1d,
where the n6v3-subset is used.

Note that the a(v) graphs are presented in the most conve-
nient form, where the acceleration is expressed in m s−2 and
the velocity in km s−1. So, the slope k1 of the linear regres-
sion line in such a presentation has the unit [km−1 m s−1] =
[10−3 s−1], thus the units-adjusted slope has the value γ1 =

10−3k1. Analogously, the parameter k2, which appears in the

Fig. 1. The acceleration-speed correlation: a) 2D distribution of events
in a–v space for n4vm-subset. N is the number of events in the [∆a] ×
[∆v] = [5 m s−2] × [20 km s−1] bins. b) The n4v3 data. c) n4v3
bin-averaged values am versus v3 for ∆v = 100 km s−1 bins (be-
yond v > 1000 km s−1, five successive bins are merged into ∆v =
500 km s−1 bins). Full lines in b) and c) show the linear least square
fits, whereas 99% confidence lines are drawn dashed. d) Quadratic
fit for n6v3 data (bold-dotted line) compared with the linear fit (thin-
dashed line).

quadratic fit and has the unit [m km−2] = [10−3 km−1], is re-
lated to the unit adjusted slope as γ2 = 10−3k2, where γ2 is
expressed in km−1.
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Table 1. Summary of linear fits a = −γ1(v − v0).

am(vi) Data γ1 v0 C

set 10−3 s−1 km s−1

complete sets

am(vm) n4vm 0.0106 ± 0.0012 403 ± 28 0.13

am(vm) n6vm 0.0101 ± 0.0010 445 ± 18 0.16

am(v3) n4v3 0.0288 ± 0.0010 421 ± 10 0.41

am(v3) n6v3 0.0241 ± 0.0008 431 ± 7 0.46

am(v5) n4v5 0.0193 ± 0.0011 445 ± 9 0.25

am(v5) n6v5 0.0196 ± 0.0009 455 ± 8 0.34

Mean 0.019 ± 0.007 430 ± 20

bin-averaged

am(vm) n4vm 0.0113 ± 0.0016 303 ± 65 0.90

am(vm) n6vm 0.0108 ± 0.0016 350 ± 45 0.92

am(v3) n4v3 0.0266 ± 0.0007 407 ± 15 0.96

am(v3) n6v3 0.0244 ± 0.0009 425 ± 7 0.99

am(v5) n4v5 0.0186 ± 0.0033 368 ± 71 0.89

am(v5) n6v5 0.0188 ± 0.0025 401 ± 58 0.93

Mean 0.018 ± 0.007 380 ± 40

The same regression analysis as the one shown in Fig. 1 is
performed for all other velocity options and data-subsets. The
results are summarized in the upper part of Table 1, where in
the first two columns the velocity option and the data-subset
label are indicated. In the 3rd, and 4th column we present the
unit-adjusted slope, γ1 = 10−3k1 s−1, and the x-axis intercept,
v0 ≡ va=0, of the linear least squares fit, a = −γ1(v − v0). In
the last column the correlation coefficients C are presented.
According to the F-test the statistical significance P% is larger
than 99% for all correlations listed in Table 1 (P∗% = 100 − P%

gives the probability for C = 0).
In order to check how much the accuracy of measure-

ments influences the obtained results, we successively excluded
the events with the acceleration-error Ma larger than 30, 20,
10 m s−2. It was found that the results do not depend signifi-
cantly on such a subsampling.

In the lower part of Table 1 we show the results obtained
using the bin-averaged values of a and v (Fig. 1c). The lin-
ear least squares fits presented in Table 1 exclude the high-
est velocity bins, 1500 < v < 2000 km s−1 and 2000 < v <
2500 km s−1, where only a small number of events is found
(e.g., in the n6v3-subset these two bins contain only 21 and
1 event, respectively).

Figure 1 and Table 1 reveal a distinct anticorrelation of ac-
celerations and speeds. The largest correlation coefficients are
found for the n6v3-subset and n4v3-subset, which will be ad-
dressed in Sect. 5.1 and Appendix B.

Inspecting Table 1, one finds that the slopes are scattered in
the range γ1 ≈ 0.01–0.03 × 10−3 s−1. The acceleration am = 0
is found between v0 ≈ 350 and 450 km s−1 in most of the data
subsets considered. The bin-averaged data give systematically
lower values of v0 than the complete data sets (v0 = 380 ± 40
and v0 = 430 ± 20 km s−1, respectively).

Table 2. Summary of quadratic fits a = −γ2(v − v0)|v − v0|.

am(vi) Data γ2 v0

set 10−6 km−1 km s−1

am(vm) n4vm 0.0061 84

am(vm) n6vm 0.0067 171

am(v3) n4v3 0.0192 162

am(v3) n6v3 0.0359 500

am(v5) n4v5 0.0179 266

am(v5) n6v5 0.0281 445

The results shown in Table 1 can be summarized in general
terms as:

a[m s−2] = −k1(v − v0)[km s−1] = −0.02±0.01 (v − 400±50) , (2)

where the acceleration a is expressed in m s−2 and the veloc-
ity v in km s−1. Such an anticorrelation of accelerations and
speeds is indicative of the aerodynamic drag (Cargill et al.
1996; Vršnak 2001a; Cargill & Schmidt 2002). Indeed, the ve-
locity v0 ≡ va=0 ≈ 400 km s−1 is relatively close to the typi-
cal solar wind speed in the considered distance range (Sheeley
et al. 1997). So, roughly speaking, CMEs faster than the so-
lar wind decelerate, whereas slower ones accelerate. However,
note that v0 is in fact somewhat larger than the values measured
within the LASCO field-of-view (Sheeley et al. 1997); the issue
is addressed in Sect. 5.3.

Finally, we emphasize that Figs. 1a, b, and d expose a void
of data-points in the range v < 150 km s−1, a < 0, revealing
that there are practically no slow events that decelerate.

Results presented by Gopalswamy et al. (2001b) and
Vršnak (2001a) indicate that the a–v relationship might be bet-
ter approximated by the quadratic dependence of the form de-
fined by Eq. (1)1. The quadratic fit parameters, given in Table 2,
show a much larger scatter than the linear-fit ones (to be dis-
cussed in Sect. 5.3). Statistically, the most reliable quadratic fit
is obtained for the n6v3-subset which is shown in Fig. 1d. For
this sample the least squares fit gives γ2 = 0.036 × 10−6 km−1

and v0 = 500 km s−1. The values averaged over all considered
data sets are γ2 = 0.019 ± 0.012 × 10−6 km−1 and v0 = 270 ±
170 km s−1. A more detailed treatment of quadratic fits is pre-
sented in Sect. 4.2, where it will be shown that they become
statistically relevant after the data are sorted into the width and
mean-distance bins.

4. Dependencies γ(φ) and γ(Rm)

The a–v anticorrelation indicates that the motion of CMEs in
the R = 2–30 range is strongly influenced by the aerodynamic
drag. If so, it can be expected that the CME width φ is an im-
portant parameter since the drag acceleration depends on the
dimensions of the moving body. On the other hand, the drag

1 When Eq. (1) will be used to fit the data, i.e., to describe the sta-
tistical relationship between the measured mean-accelerations and ve-
locities we will call it the a–v correlation or quadratic a–v fit; when
used to describe the instantaneous drag acceleration we will call it the
a(v)-curve or a(v)-trajectory.
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Fig. 2. Slopes k1 = 103γ1 of the a(v) linear fits for the n4v3-subset
data sorted into ∆φ = 10◦ bins: a) k1 presented as a function of bin-
averaged widths φ; b) k1 shown versus bin-averaged distances Rm. The
power-law least squares fits are presented together with the correlation
coefficients C. In the insets analogous results are presented for the
∆φ = 20◦ bins using n4v3-subset (dots), n4v5-subset (crosses), and
n4vm-subset (triangles).

depends on the external density and flow speed, so one can
suspect that another relevant parameter is the height range in
which a particular CME is measured. To investigate the role of
the parameters φ and Rm we rely mainly on the n4-set, which is
large enough to provide a further sub-grouping of the data into
a number of φ and Rm bins. Furthermore, we limit the analysis
only to φ < 200◦, to exclude halo CMEs, being predominantly
Earth- or anti-Earth- directed, i.e., to exclude events where pro-
jection effects are large.

4.1. Simple φ-bins

In the first step we tried to sort the data into the ∆φ = 10◦ bins,
and for each bin we have drawn the a(v) graphs independently
to check if, and how, the slopes γ1 depend on φ. The procedure
was applied to all velocity options and it turned out that the
∆φ = 10◦ bins are generally too narrow, giving a clear γ1(φ) re-
lationship only in the case of the n4v3-subset. The outcome is
shown in Fig. 2a, where the 100◦ < φ < 150◦ and 150◦ < φ <
200◦ data are merged, since for φ > 100◦ the ∆φ = 10◦ bins are
not abundant enough (see Fig. 10d in Appendix A) to provide
statistically significant a–v correlations.

Figure 2a shows that the parameter γ1 is smaller for broader
CMEs, exposing a distinct power-law-like dependence. On the
other hand, as the bin-averaged values φ increase, the bin-
averaged distances Rm also increase because wider CMEs are
usually traced to larger heights, i.e., φ and Rm are correlated

Table 3. Summary of power-law fit parameters (k1 = αφφ
−βφ , k1 =

αRR−βR ) for ∆φ = 20◦-bin sampling.

n4v3 n4v5 n4vm

αφ 0.22 ± 0.03 0.09 ± 0.03 0.17 ± 0.03

βφ 0.50 ± 0.04 0.36 ± 0.07 0.69 ± 0.09

αR 2.61 ± 2.55 0.52 ± 0.57 8.4 ± 2.76

βR 2.08 ± 0.45 1.49 ± 0.49 3.1 ± 0.33

(see Fig. 11c in Appendix A). Consequently, one finds also
a distinct γ1(Rm) power-law-like dependence which is shown
in Fig. 2b.

The decreasing trend of γ1(φ) and γ1(Rm) can be recog-
nized also when other velocity options and data-subsets are
utilized. However, statistically significant results (P > 95%
confidence level) are achieved only if the bins are broadened
to ∆φ ≥ 20◦ bins. In the insets in Fig. 2 we show the outcome
for n4v3, n4v5, and n4vm subsets, split into the ∆φ = 20◦ bins.
The power-law fit parameters are summarized in Table 3.

Table 3 and the insets in Fig. 2 illustrate that the fit param-
eters depend considerably on the velocity option – the errors of
individual fit parameters are far smaller than the difference be-
tween different subsets. The power-law exponents βR received
from the γ1(R) = αRR−βR fit vary from βR = 1.5 to 3.1, whereas
the exponents of the γ1(φ) = αφφ−βφ fit vary from βφ = 0.36
to 0.69.

4.2. Decoupling the Rm–φ crosstalk

Due to the crosstalk of φ and Rm, the presented simple-bin anal-
ysis does not really specify how γ1 depends on φ at a given
height, and vice versa, how γ1 depends on Rm for CMEs of a
given width class. So, in the next step we try to decouple the
γ(R, φ) dependence. The straightforward procedure would be
to select the data within a narrow interval of Rm, and then to di-
vide the data into a number of φ-bins. Analogously, one could
try to select CMEs having widths within a certain interval, and
then to separate the data into Rm-bins. However, in the former
case the results turned out to be statistically significant only if
the Rm-interval includes at least 6 < Rm < 12, and analogously
in the later case, if the width-interval embraces 30◦ < φ < 90◦.
Thus, although in this way the Rm–φ crosstalk is reduced to
a certain degree, the effect of the Rm(φ) dependence is still
present because of too wide ∆Rm, or ∆φ intervals used.

So we apply another, less stringent procedure, where we
start by creating ∆φ = 20◦ bins, and then proceed by elimi-
nating in each bin CMEs with largest (smallest) values of Rm,
until Rm in all φ-bins attains a previously chosen value. This
provides an insight into the γ(φ) dependence at a given height.
Analogously, we group the data into ∆Rm = 2 bins, and then
successively eliminate wide (narrow) CMEs until all Rm-bins
show the same mean width φ. This provides an insight into the
γ(R) dependence for a chosen mean CME width.

Figure 3 illustrates how the a–v relationship changes
with increasing Rm. We show the n4v3-subset data in three
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Fig. 3. The a–v correlations shown for three Rm-bins of the n4v3, φ =
60◦, subset: a) 5 < Rm < 7 (Rm = 6.01); b) 7 < Rm < 9 (Rm =

7.96); c) 11 < Rm < 15 (Rm = 13.25). The number of data points is
indicated (N).

different ∆Rm = 2 bins, with the average width adjusted to
the value φ = 60◦ in each bin. The data are fitted by the linear
and quadratic dependencies, and it turned out that the quadratic
fits show a much larger statistical significance than in the case
of complete data sets (Sect. 3) and the Rm– φ coupled data
(Sect. 4.1). Note that the linear, as well as the quadratic fits,
become succesively less steep, whereas the x-axis intercepts v0
shift to larger velocities. A similar behaviour can be recognized
if one focuses on the lower boundary of the data (the “void”
mentioned in Sect. 3)

In Fig. 4 the outcome for n4v3-subset is summarized. The
dependencies γ1(φ) and γ2(φ) are shown in Fig. 4a, where the
φ-bin averaged value of Rm is adjusted to the value Rm = 9.
The top panel depicts the linear-fit results, γ1(φ), whereas in
the bottom panel we present the quadratic-fit outcome, γ2(φ).
Similar results are obtained for Rm = 8. For Rm > 9 and Rm < 8
the statistical significances of a(v) fits in some φ-bins become
lower than P < 95% due to a small number of data, so the
γ(φ) dependencies become unreliable.

In Fig. 4b we show the γ1,2(R) dependence for φ = 30◦ and
φ = 60◦. For φ < 30◦ and φ > 60◦ the results become unreliable
due to the same reason as in the Rm < 8 and Rm > 9 case.

In Fig. 4c we show the x-axis intercept v0 as a function
of Rm, for φ = 30◦ and φ = 60◦, as found from the linear-
fitting (top) and the quadratic-fitting (bottom). The values of v0
show a distinct increase with the radial distance. The obtained
velocities are compared with the empirical solar wind model
by Sheeley et al. (1997):

w(R) = w∞
√

1 − e−(R−Rb)/Ra , (3)

where Rb = 2.8, Ra = 8.1, and w∞ is the asymptotic value
of the wind speed for R → ∞, commonly taken to be w∞ =
400 km s−1. Obviously, the values of v0(R) are systematically
larger than the solar wind speed w(R), which will be discussed
in Sect. 5.3.

The outcome for the n4vm-subset and the n4v5-subset is
statistically less reliable than for the n4v3-subset. These op-
tions show a lower significance of a–v correlations, and conse-
quently larger errors of power-law fit coefficients for the γ1,2(φ)
and γ1,2(R) dependencies. Yet, the overall decreasing trend of
γ1(φ) and γ1(R) is well recognizable, although not as clear as
in the Rm– φ coupled case (insets in Fig. 2).

5. Interpretation and discussion

The acceleration-velocity relationship analysed in Sects. 3
and 4 indicates that the aerodynamic drag plays an important
role in the dynamics of CMEs in the upper corona and the near-
Sun interplanetary space. In this section we interpret the ob-
tained empirical relationships, relying on basic physical char-
acteristics of the drag.

However, first we have to clarify some important issues
considering the a–v correlation as a statistical superposition
of extracted kinematical parameters of different-width CMEs
measured at different mean heights. Then we proceed by dis-
cussing the qualitative aspects of results that do not depend on
the procedure and the velocity option. Eventually, we compare
the results with some previous studies, and discuss the motion
beyond R = 30.

5.1. Meaning of the a–v relationship

When the dynamics of an individual CME is considered,
Eq. (1) relates the instantaneous acceleration with the instan-
taneous velocity, whereas actual CME measurements provide
only the mean acceleration estimated over a wide distance
range. Furthermore, CMEs have different widths φ, and are
measured at different Rm, across different ∆R. This means that
the interaction of CMEs with the solar wind is (quantitatively)
different for various “categories” of CMEs, as demonstrated in
Sect. 4. For this reason it is instructive to pay attention to the
meaning of the statistical outcome, taking into account the na-
ture of individual measurements. Furthermore, one should bear
in mind that CMEs move in various directions (different projec-
tion effects), the solar wind is highly inhomogeneous (different
ambient densities and flow velocities for different CMEs), and
the relative contribution of other forces might be different.
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Fig. 4. Summary of the a–v correlation parameters obtained for the n4v3-subset. a) Slopes γ1 (top) and γ2 (bottom) shown as a function of
bin-averaged widths φ for Rm = 9; b) slopes γ1 (top) and γ2 (bottom) shown as a function of bin-averaged distances Rm for φ = 30◦ (circles
and fit shown in gray) and φ = 60◦ (crosses and fit shown in black). c) The corresponding x-axis intercepts v0 presented as a function of R and
compared with the empirical solar wind model by Sheeley et al. (1997) for w∞ = 400 km s−1 (bold-gray line). In a) and b) the power-law least
squares fits for γ1,2(φ) and γ1,2(R) are shown together with the correlation coefficients C.

Fig. 5. a) A sketch showing three a = −γ2(v−v0)|v−w| curves of differ-
ent γ2 and w, and the statistical outcome for a set of nine fictive-events
that were traced during a limited time interval corresponding to bold
segments on the a(v)-curves. The mean acceleration and velocity of a
given event is marked by circle, and the velocity interval by thin hor-
izontal line. b) Enlarged low-velocity part of the a–v graph showing
n4v3-subset data (gray), where the events with Rm < 5 are enhanced
by black dots. Two quadratic a(v)-curves are drawn provisionally to
depict the border of the “void”.

In Fig. 5a we present schematically the physical back-
ground of the statistical relationship between the mean accel-
erations and velocities for an imaginary set of CMEs whose
motion is dominated by the drag. We have drawn three a =
ad = −γ2(v − w)|v − w| curves, hereinafter abbreviated as

a(v)-trajectories. The curves are characterized by a successively
larger w and smaller γ2, representing the drag acceleration at
different heights. Note that at a given ambient flow speed w,
CMEs of different widths φ have different γ2, which should be
represented by a fan of curves crossing the x-axis at the given
w. Furthermore, the presence of other forces shifts the curves
up or down (see Sect. 5.3).

On the three depicted quadratic curves we have drawn the
“real” a(v)-trajectories (bold segments of the curves) of sev-
eral CMEs traveling at various velocities in different solar
wind environments. CMEs that are faster than the solar wind
(v > w ⇒ ad < 0) move in the left-up direction, whereas those
with v < w, i.e., ad > 0, move right-down. Note that the instan-
taneous acceleration of CMEs is changing. The measured mean
acceleration and velocity are indicated by circles, whereas the
change of the velocity is indicated by thin horizontal bars.

Figure 5a explains several aspects of the statistical results
obtained in Sects. 3 and 4. First of all, it clarifies why the
quadratic fits turned out to be worse than linear ones when the
complete data set is considered. Measuring CMEs of different
dimensions and at different heights smears out the basic a(v)
form into an inclined “cloud” of data points which is naturally
better fitted by the straight line.

On the other hand, the analysed CMEs were measured only
above the occulting disc of the LASCO-C2 coronagraph. So,
the smearing effect is reduced below some a(v)-curve that is
defined by the solar wind speed w and γ2 appropriate for Rm

of CMEs measured at low heights across relatively short dis-
tance interval. Indeed, one finds a sharp-edged void at a <
0, v < 150 km s−1 (see Fig. 1) for any of the subsets and
velocity options used. In Fig. 5b we show this part of the
n4v3-subset a–v graph enlarged, where two (provisionally cho-
sen) quadratic a(v)-curves are inserted to depict roughly the
limits within which lies the border of the void (pluses and
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crosses represent γ2 = 1 and 3 × 10−6 km−1, respectively; in
both cases w = 100 km s−1). Going back to Fig. 3 one finds
that as Rm increases, the edge of the void successively expands
towards higher velocities and becomes less steep.

5.2. Qualitative behaviour of the drag

Let us now focus on the results that qualitatively do not depend
on the procedure (the velocity option or sampling):

i) slopes of the a–v correlations, γ1 and γ2, decrease with
height and are smaller for wider CMEs;

ii) x-axis intercept of the a–v correlation (v0 = va=0) increases
with height;

iii) v0(R) is systematically larger than the solar wind
speed w(R) for some 100–200 km s−1.

The parameter γ2 in the drag acceleration, Eq. (1), depends on
the CME cross-section (A) and mass (m), as well as on the am-
bient density (ρo):

γ2 ∝ ρoA
m

(4)

(cf. Cargill et al. 1996). Employing a characteristic CME di-
mension, d, one can write for a given R most generally:

γ2 ∝ ρo

ρi

d2

d3
=
ρo

ρid
, (5)

where ρi stands for the internal CME density averaged over
the CME body, and we substituted m ∝ ρid3 and A ∝ d2 (see
Cargill 2004 for a more specific approach where the cylindrical
shape is presumed). Assuming that d is related to the angular
width (e.g., d ≈ rφ; φ ≈ const.; Bothmer & Schwenn 1994),
one finds out that for a fixed distance r, γ2 should be smaller
for larger φ. Indeed, the relationships exposed in Figs. 2c and 4a
indicate such a dependence.

Here we have implicitly assumed that at a given height
there is no statistical correlation between the CME density ρi

and d. However, wider CMEs seem to be denser: they can be
traced to larger distances (see Fig. 11c in Appendix A), imply-
ing that they are brighter, meaning also denser. This effect tends
to steepen the slope of the γ2(φ) dependence.

Equation (4) can be rewritten also as γ2 ∝ ρod2/m. Let
us assume that m(R) ≈ const., i.e., that the mass loss from
the prominence body and the mass pile-up at the leading edge
of CME, at least partly compensate each other. Furthermore,
utilizing d ∝ r, and taking into account that in the considered
distance range the ambient density decreases with the height
as, say, ρo ≈ r−4 (see, e.g. Leblanc et al. 1998, or Vršnak et al.
2003) one finds roughly γ2 ∝ r−2. In other words, γ2 has to de-
crease with the distance, consistent with Fig. 4b. At larger dis-
tances, where ρo ≈ r−2, it should become approximately con-
stant, except for the mass pile-up effect (for details see Cargill
2004).

5.3. Influence of other forces

The slopes of the empirical γ1,2(R) and γ1,2(φ) dependencies
obtained in Sects. 3 and 4 are quite sensitive on the sampling

Fig. 6. a) The parameter v0 ≡ va=0 obtained from n4v3, n6v3, n4vm,
and n6vm subsets presented as a function of R. The bin-averaged
widths are adjusted to φ = 30◦ and φ = 60◦. The outcome is com-
pared with the empirical solar wind model by Sheeley et al. (1997)
for the asymptotic speed of w∞ = 400 and 600 km s−1 (bold-gray and
bold-black curve, respectively). b) The inferred propelling force accel-
eration shown in the log-log graph for the v3 (squares) and vm (crosses)
based subsets that are shown in a). The power-law fits are indicated in
black and gray, respectively. The acceleration of gravity is indicated
by thin-dashed line.

and velocity option. In such a situation a reliable quantita-
tive comparison with a more detailed theoretical considera-
tion would be exaggerated. On the other hand, the x-axis in-
tercept v0 in the a–v correlation shows a much more coherent
behaviour, so in the following we focus on this parameter.

In the absence of other forces the CME acceleration would
be governed by Eq. (1), or in linear approximation by a =
γ1(v − w). Consequently, CMEs of a given Rm would form the
a–v correlation that crosses the x-axis around w(Rm). Here we
find a distinct quantitative discrepancy: Fig. 4c shows that the
x-axis intercepts v0(R) are systematically higher than the corre-
sponding solar wind speeds w(R).

To check this issue in more detail, in Fig. 6a we compare
the v0(R) dependencies obtained from different data sets and ve-
locity options, with the model values evaluated by Eq. (3). One
finds out that velocities v0 closely follow the solar wind model
for the asymptotic speed of w∞ ≈ 600 km s−1, which is consid-
erably higher than the widely accepted value w∞ = 400 km s−1.
Going back to Table 1 and comparing the listed values with
w ≈ 250 km s−1 evaluated from Eq. (3) for Rm ≈ 9, one finds
again that the values in Table 1 are larger for ≈150 km s−1.
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Fig. 7. Schematic presentation showing how the a–v correlation (bold
line) is shifted in the presence of a force which gives rise to the ac-
celeration ax. The resulting dependence (gray-dashed line) intercepts
x-axis at v0 > w if ax > 0, and at v0 < w if ax < 0.

Such an excess can be interpreted in terms of a non-
negligible propelling force2. In Fig. 7 we schematically draw
how the a–v correlation is modified if the drag is not the only
force acting on CMEs in the studied distance range. We con-
sider only the simplest situation where the force (or several
forces), giving rise to an acceleration ax, does not statistically
depend on v. Such a force does not affect the slope of the
a–v correlation – it only changes the x-axis intercept to v0 � w.
If ax < 0 (like gravity), the intercept value decreases (v0 < w),
and if ax > 0 the intercept value increases to v0 > w. The accel-
eration ax can be determined from the difference ∆v = v0 − w
as ax = γ1∆v (Fig. 7).

In the following we consider the influence of gravity and
the propelling (presumably Lorentz) force, giving rise to accel-
erations g and aL. The total acceleration (force per unit mass)
can be written as a = ad − g + aL, where ad represents the drag
acceleration. So, the additional net acceleration ax = aL − g
can be estimated as aL − g = γ1∆v. Since the values γ1(R)
are known from observations (e.g., Fig. 4b) and ∆v(R) can
be estimated using some solar wind model (e.g., Eq. (3)), the
Lorentz force acceleration can be evaluated as aL = γ1∆v + g,
where g(R) = 274/R2.

Note that by using g(R) = 274/R2 we neglect the buoy-
ancy – assuming ρo ≈ ρi one gets for the net acceleration of
gravity ag = 0. The value of aL inferred by using g can be con-
sidered as an upper limit. Another drawback of the procedure
lies in the fact that faster CMEs have on average larger Rm.
So, the slope of the a–v correlation would be altered since g(R)
decreases: the influence of g is, statistically, smaller at larger
velocities and the a–v correlation becomes less steep (γ1 de-
creases). Analogously if aL(R) decreases, the a–v correlation
becomes steeper. In principle, it would be possible to perform
an iterative procedure to estimate more precisely aL(R), but
bearing in mind the accuracy of the observational input and
other drawbacks of the applied procedure (see Appendix B),
such a treatment would be exaggerated.

For the matter of illustration, let us first take γ1 ≈ 0.02 ×
10−3 s−1 and v0 = 350–400 km s−1 (“average” values from

2 Ruždjak et al. (2004) offered also an alternative explanation,
where the CME-wind coupling is governed by the fast solar wind. Yet,
most of CMEs are launched in the streamer belt, and their mean width
is relatively small (see Appendix A), so such an ad hoc interpretation
in fact does not provide a satisfying explanation.

Table 1). Using w ≈ 250 km s−1 at Rm = 9 as obtained from
Eq. (3), one finds ∆v = v0 − w = 100–150 km s−1. Utilizing
these values one receives aL − g = γ1∆v = 2–3 m s−2, i.e.,
aL ≈ 6 m s−2, since gR=9 = 3.4 m s−2.

Let us now evaluate aL(Rm) = γ1∆v+g using the differences
∆v(Rm) = v0−w(Rm) and slopes γ1(Rm) for all individual R-bins
considered in Sects. 3. and 4.

The outcome is shown in Fig. 6b for all subsets that are
utilized in Fig. 6a. Bearing in mind all drawbacks of the pro-
cedure, one can say that the propelling-force acceleration, i.e.,
the propelling force per unit mass, at R ≈ 10 amounts to aL ≈
5–10 m s−2 ≡ 5–10 N kg−1. The data show a decreasing trend
which can be roughly expressed as ≈R−1. The values based
on the velocity v3 are larger than those obtained by using vm.
This is primarily a result of the steeper slope γ1 and somewhat
larger v0 of the a–v3 correlation (Sect. 5.1).

Let us note that using the isothermal (T = 106 K) solar
wind model by Parker (1958; see also Mann et al. 2003) instead
of Eq. (3), one gets a 30–50% larger ax (resulting in 10–30%
larger aL), but the slope of ax(R) remains approximately R−1.

We emphasize the statistical nature of Fig. 6b, i.e., it
does not represent an average behaviour of the propelling
force aL(R) in a “typical” CME. It rather shows that the pro-
pelling force is on average weaker at larger distances, being
consistent with the anticipated behaviour of the Lorentz force
(Sect. 1).

There is also another way to estimate the quantity aL =

a+ g − ad. The drag acceleration for a given CME can be eval-
uated from ad ≈ −γ1(v−w) by substituting the velocity v = vm,
v3, or v5, and the model-valuew = w(Rm). For estimating γ1 one
can take the empirical scaling law γ1 = 1.16 R−1.35 × 10−3 s−1

found by a different procedure by Vršnak (2001a). Finally, us-
ing the measured values am and g(Rm) = 274/R2

m one can esti-
mate aL for each event individually.

The calculated values ad are shown in Fig. 8a as a function
of v3 (a similar outcome is also found using vm or v5). The over-
all anticorrelation pattern in Fig. 8a is similar to that exposed
by Fig. 1, justifying the proposed interpretation in terms of the
drag force, and on the other hand confirming reliability of
the empirical scaling law γ(R) obtained by Vršnak (2001a). The
slopes of the linear fits in Figs. 8a and 1 are similar, whereas
there is a difference in the x-axis intercept v0. The linear fit
in Fig. 8a crosses the x-axis at v0 ≈ 250 km s−1, i.e., it is
lower for ∆v0 ≈ 150 km s−1. Again, this can be attributed to
the existence of ax > 0. Taking for the slope of the ad(v) cor-
relation γ1 = −0.026 × 10−3 s−1 (see the fit in Fig. 8a) one
finds ax = γ1∆v0 = +3.9 m s−2, and assuming ax = aL − g
one receives aL(Rm) = 7.3 m s−2, consistent with the previous
estimates.

Another difference found in Figs. 1 and 8a is a considerably
larger scatter of the data in Fig. 1. Firstly, this can be attributed
to a variety of the propelling force strengths. Furthermore, the
differences in CME widths are not included in the evaluation
of ad since the used scaling law by Vršnak (2001a) does not
provide that. Finally, note that in the low-velocity regime, v <
150 km s−1, the accelerations appear in Fig. 8a down to ad ≈
−10 m s−2, whereas in Fig. 1 (see also Fig. 5) the upper edge
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of the void is at a = 0. Such a difference is also consistent with
the previous estimates of the propelling force.

In Fig. 8b we compare the distributions N(ad) and N(aL)
for the n6v3-subset (see also the the distribution of measured
accelerations, N(am) shown in Fig. 10f in Appendix A). In ad-
dition, we present in the inset the distribution N(g), where g =
g(Rm). Mean values are: ad = −5.4 ± 9.7 m s−2, aL = 10.0 ±
13.9 m s−2, and g = −5.2 ± 4.6 m s−2, which explains why
CMEs in the upper corona and near-Sun interplanetary space
show on average am ≈ 0 (Appendix A). We emphasize that very
similar distributions are obtained utilizing any other subset or
velocity option. The drag acceleration is dominantly negative,
i.e., most events are faster than the solar wind. On the other
hand, in the majority of events, aL lies between 0 and 20 m s−2,
consistent with Fig. 6b. The distribution indicates that there is
a considerable fraction (18%) of events where aL appears to
be larger than 20 m s−2 (see also Vršnak 2001b). In extreme
cases (2%) aL is larger than 50 m s−2 (to be studied in detail in
a separate paper). In 17% of events the inferred values of aL

are negative, with 5% showing aL < −10 m s−2. Note that
the aL < 0 regime is revealed by the “fall-back” events de-
scribed by Wang & Sheeley (2002) and by the existence of an
upper equilibrium observed in some events (Vršnak et al. 1990;
Vršnak 2001b). Such a behaviour is anticipated in the flux rope
model by Vršnak (1990).

Finally, let us emphasize one potentially important side-
result of the presented analysis. None of the presented graphs
(including those in Appendix A) shows any kind of grouping
of CMEs that would confirm the existence of two (or more)
distinct classes of events regarding the velocity and/or accelera-
tion behaviour, as proposed by some authors who studied small
samples of preferentially large CMEs (see, e.g., MacQueen &
Fisher 1983, or Andrews & Howard 2001). Rather, the distri-
bution of CMEs in the a–v space indicates that there is a contin-
uum of events over the actual acceleration and velocity range.

5.4. Comparison with previous studies

Values of the exponent βR in the γ1 ∝ R−βR scaling received in
Sect. 4.1, can be directly compared with the result by Vršnak
(2001a) since the Rm–φ crosstalk was implicitly present therein
too. The obtained values βR = 1.5–3.1 are larger than βR = 1.35
found by Vršnak (2001a), indicating a considerably steeper de-
crease of γ1. However, it should be noted that the results by
Vršnak (2001a) were based on a limited set of only 12 events,
all of which showed an exponential-like decay of velocity, indi-
cating that the drag is a dominant force. Furthermore, seven of
these events were measured at low heights by tracing Hα fea-
tures, i.e., the deceleration rates could be higher for leading
edges of CMEs.

In Fig. 9 we compare the slopes of the a–v correlations
obtained herein with the scaling law γ1(R) established by
Vršnak (2001a), and with the results for the interplanetary
space obtained by Gopalswamy et al. (2000) and Gopalswamy
et al. (2001b). The values for the complete n4v3-subset and
n6v3-subset are positioned at R = Rm = 9 and overlap
each other. The slopes from Gopalswamy et al. (2000) and

Fig. 8. a) Drag accelerations estimated using vm for n6v3-subset,
shown in the ad–v3 space. The corresponding linear least squares fit
is indicated. b) The n6v3-subset distribution of estimated drag accel-
erations (black) and the corresponding inferred propelling force ac-
celerations aL (gray). The bin width is 5 m s−2. 23 (0.6%) events in
ad distribution and 47 (1.3%) in aL distribution are out of the scale. In
the inset the distribution of the acceleration of gravity g is shown for
bins of 1 m s−2.
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Fig. 9. The slopes k1 = 103γ1 of the linear a–v correlations, pre-
sented as a function of radial distance: circle – n6v3-subset; trian-
gle – Goplaswamy et al. (2001b); square – Gopalswamy et al. (2000);
crosses connected by the dotted line – Vršnak (2001a). The power-
law fit to these data-points reads k1 = 1.2 R−1.5 and is drawn by the
thin-black line. The gray dashed line shows the scaling k1 = 2 R−1.5

inferred by Vršnak & Gopalswamy (2002). The bold-black and bold-
gray lines show power-law fits from Fig. 2b and from Fig. 4b-top for
φ = 60◦, respectively.

Gopalswamy et al. (2001b) are drawn at R = 40 and R = 46,
respectively, corresponding to the geometrical mean (see the
argumentation in Vršnak 2001a) of the considered distance
ranges (0.76 and 1 au, respectively). The fit through the pre-
sented data-points matches quite closely to the scaling k1 =

2 R−1.5 that was inferred by Vršnak & Gopalswamy (2002)
from the Sun-Earth transit times.
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Table 4. Statistics of CMEs faster than solar wind at R ≥ 25.

v∗ (km s−1) N % φ am

500 374(215) 8(57) 137 +0.9

600 299(177) 7(59) 143 +1.4

800 175(107) 4(61) 166 +3.1

1000 88(53) 2(59) 196 +5.2

5.5. Motion of CMEs beyond R = 30

Figure 8b indicates that in the R = 2–30 range the majority
of events has already more or less adjusted to the solar wind
speed since the N(ad) distribution (Fig. 8) is sharply peaked at
ad = 0. A similar conclusion can be drawn from Fig. 1a, since
most events are grouped around a = 0, v ≈ 400 km s−1.

Let us now inspect the distribution of speeds ve estimated
at the time of last measurement (see Sect. 2) for the events
that were traced to Re ≥ 25. We find that only 374 out of
4463 n4v3-events (8%) had ve > 500 km s−1. The number
of events with velocities above some referent value, ve > v∗,
decreases as we increase the limit v∗. The events with ve >
v∗ are on average much broader than the rest of the sam-
ple. Furthermore, they show a positive mean acceleration, be-
ing statistically larger for faster (and broader) CMEs. The
n4v3-subset statistics is summarized in Table 4 for different
values of v∗. The number (N) and the percentage (%) of the
v > v∗ events is presented in the 2nd and 3rd column. The val-
ues in brackets provide the number (and relative percentage) of
am > 0 events. The average values of widths and accelerations
are given in the last two columns. Note that more than half of
the ve > v∗ events are characterized by am > 0. In some cases it
is larger than am = 50 m s−2.

Such a behaviour has important implications for the pre-
diction of the 1 au transit. In most CMEs the propelling force
ceases, and the velocity becomes adjusted to the solar wind
speed, already below R = 30. The arrival of these events to
the Earth (if they preserve their integrity) can be estimated to
a sufficient accuracy utilizing the v = const. = 400 km s−1 ap-
proximation. However, for very fast/wide CMEs, which in fact
are the most geo-effective events (Zhang et al. 2003), the pre-
diction based on LASCO observations is more difficult since
the action of the propelling force is prolonged in such events.
To be successful in predicting the 1 au transit, a higher degree
polynomial fit to the R(t) LASCO-data should be tried, to es-
timate if possible, how the acceleration changes. This might
give a clue whether the event had entered the drag-dominated
regime or not. If yes, the interplanetary motion of the CME
should be calculated using the velocity at R = 30 as the initial
velocity and utilizing the scaling γφ(R) for the corresponding
φ-bin. Then, the equation of motion given by Eq. (1) should be
solved numerically, in the manner demonstrated by Vršnak &
Gopalswamy (2002). Note that events of this kind should have
the smallest deceleration rates since they are broad, which im-
plies a relatively small γ2.

The prolonged action of the propelling force in fast/wide
CMEs is consistent with the observations based on the

interplanetary scintillation (IPS). For example, Manoharan
et al. (2001) have analysed the IP propagation of the CME as-
sociated with the large flare of 14 July 2000. Until R ≈ 100
the speed of ejection was almost constant (v ∝ R−0.08), and
only beyond this distance it started decelerating more rapidly,
as v ∝ R−0.72. In such cases, the Thompson scattering measure-
ments by the Solar Mass Ejection Imager (SMEI) combined
with IPS observations (Jackson et al. 2003; Eyles et al. 2003)
could be essential for the understanding of the IP propagation
of CMEs and a successful prediction of 1 au transit time.

6. Conclusion

We have shown that there is a well defined anticorrelation be-
tween the acceleration and velocity of CMEs measured in the
range 2 < R < 30. The relationship can be comprehended as
the statistical outcome for a sample of CMEs whose motion is
significantly influenced by the aerodynamic drag: Only 14% of
fast (v3 > 1000 km s−1) CMEs are still speeding up, and 7% of
slow CMEs (v3 < 150 km s−1) show (only a weak) deceleration.

However, the existence of fast events whose velocity is still
increasing suggests that in a certain fraction of events the pro-
pelling force is not negligible. On the other hand, the deceler-
ation of slow events, and existence of the aL < 0 events in the
N(aL) distribution (Fig. 8b) indicates that the deceleration in
these events could be caused not only by the gravity, but also
by the Lorentz force (see also Wang & Sheeley 2002), which
under special conditions might change its sign after passing an
upper equilibrium point (Vršnak 1990).

The overall behaviour of the parameter γ2, decreasing with
the distance and being of the order of 0.1 × 10−6 km−1 at
R ≈ 10, is very similar to that obtained by Vršnak (2001a).
In addition, we found herein that the value of γ2 is smaller
for broader CMEs when measured at the same Rm. On the
other hand, the slope of the linear a–v correlation at Rm ≈ 10
ranges between γ1 = 0.01–0.03× 10−3 s−1, which is smaller by
roughly a factor of two than found by Vršnak (2001a).

The results indicate that in the majority of events the v ≈ w
regime is achieved already in the LASCO field-of-view, i.e.,
below R < 30. Only CMEs with prolonged action of the pro-
pelling force come into the v ≈ w regime beyond R > 30, but
the events with, e.g., v > 500 km s−1 at R > 25 represent less
than 10% of the CME population.
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Appendix A: Properties of the sample

The events which were measured at n ≥ 4 instants, show
the distribution centered at am ≈ 0, with the standard devia-
tion σa = 31 m s−2. The average initial, mean, and final dis-
tances amount to Rb = 3.4 ± 1.0, Rm = 9 ± 4, and Re = 14 ± 7,
respectively.

In Fig. 10 we present the distribution of initial radial dis-
tances Rb, the distance range ∆R = Re − Rb, mean radial dis-
tances Rm, widths φ, mean velocities vm, and mean accelera-
tions am, for the n4v3-subset. Note that most often the events
start at 3 ≤ R < 4. The n4v3-subset contains 280 CME events
(6%) of the angular width larger than 180◦, out of which 184
were classified as 360◦-halo CMEs (4%). The basic statistical
parameters of the distributions are given in Table 5.

The average error of the accelerations obtained from the
2nd degree polynomial fits is Ma = 7.6 m s−2 in the n4-set, and
it drops to 4.7 m s−2 in the n6-set. The fraction of events with
errors Ma > 10 m s−2 is 18% and 10% for the two data-sets,
respectively.

The parameters Rm, φ, and vm are mutually correlated (see
also, e.g., Hundhausen et al. 1994), which is shown in Fig. 11,
where the data are presented together with the linear least
squares fits and corresponding correlation coefficients (C). We
emphasize that the φ(Rm) correlation does not represent the
broadening of CMEs with the height, but rather demonstrates
that larger CMEs can be traced to larger distances, i.e., that
broader CMEs are generally brighter. Similar holds also for the
vm(Rm) relationship – faster CMEs are on average brighter and
can be followed to larger heights. No statistically significant
correlation between am and Rm, or φ is found (C < 0.01).

The basic characteristics shown in Figs. 10 and 11 are very
similar for all of the considered subsets and velocity options.

Appendix B: CME motion

The main problem included implicitly in the performed anal-
ysis is that Eq. (1) relates the instantaneous acceleration, a,
with the instantaneous velocity, v, whereas the measurements
provide only the mean acceleration am estimated over a wide
distance range, ∆R. Consequently, it would be erroneous to ex-
pect ad hoc that the measured mean acceleration is simply re-
lated to the mean speed, even if the drag is the dominant force
in the considered distance range. Since this issue can cause a
systematic error, we have to clarify its influence.

In Fig. 12a the drag-dominated a(v)-trajectory of one a < 0
event is sketched in details. The velocity of CME at the begin-
ning of measurement is denoted at the x-axis by “b” and at the
end by “e”. The mean velocity vm, defined in the a = const.
approximation as vm = (vb + ve)/2, is marked by “m”. The
mean acceleration, in the a = const. approximation equiv-
alent to am = (ve − vb)/(te − tb), is depicted by the hori-
zontal dashed line. If the solar wind speed and the parame-
ter γ2 are taken in the first approximation to be constant, the
CME-trajectory (bold-dotted arrow) would follow the a(v) line
defined by wb and γ2b. However, as the CME advances, the am-
bient solar wind speed increases whereas γ2 decreases (Vršnak
2001; see also Sects. 4.2 and 5.2). Consequently, the CME

Table 5. Statistical characteristics of the n4v3-subset and
(n6v3-subset).

Parameter Mean Standard Median

value deviation

Rb 3.4 (3.3) 1.0 (0.9) 3.1 (3.1)

Re 14.0 (15.2) 6.9 (6.8) 12.5 (14.0)

Rm 8.7 (9.3) 3.6 (3.5) 8.0 (8.6)

∆R 10.6 (11.8) 6.7 (6.6) 9.2 (10.7)

φ 73 (77) 73 (74) 53 (57)

vm (km s−1) 465 (461) 295 (241) 400 (412)

a (m s−2) −1.2 (−0.6) 20.6 (14.6) −0.2 (0.0)

“slides” across a(v)-curves, ending at the one defined by we and
γ2e, as sketched by the bold arrow. Note that the line depicting
the mean acceleration intersects the bold arrow at the velocity v
different from vm. Furthermore, note that the intercept of the am

and vm line is below both depicted a(v)-curves, i.e., it lies on a
curve of too large γ2, corresponding to some distance smaller
than Rb. On the other hand, the intercept of the am line with vb
is located between the “initial” and “final” a(v)-curve, i.e., it is
associated with γ2 corresponding to some distance between Rb

and Re, presumably close to Rm.
If we want to inspect quantitatively the effect sketched in

Fig. 12a, it is instructive to consider firstly what mean acceler-
ation would be measured if an object would move according to
Eq. (1) in a homogeneous medium (w = const., γ2 = const.; de-
picted by the bold-dashed arrow in Fig. 12a). The mean accel-
eration of the object, evaluated from the 2nd order polynomial
fit to the distance-time data can be expressed, by definition, as:

am =
(ve − vb)
(te − tb)

=
(v̂e − v̂b)
(te − tb)

, (6)

where vb and ve denote the rest-frame velocity at the begin-
ning (tb) and at the end (te) of the measurements, whereas v̂b
and v̂e represent the corresponding velocities relative to the am-
bient gas (v̂ = v − w = v − const.).

The solution of Eq. (1) in the case vb > w reads:

v̂e = v̂be−γ2∆r̂, (7)

where ∆r̂ = r̂e − r̂b is the distance traveled relative to the ambi-
ent gas in the time ∆t = te − tb. Integrating dr̂ = v̂ dt one finds
another form of the solution:

v̂e =
v̂b

1 + v̂bγ2∆t
, (8)

(see also Cargill et al. 1996), providing:

∆t =
eγ2∆r̂ − 1
γ2Vb

, (9)

Substituting Eqs. (9) and (7) into Eq. (6) one finds:

am = −γ2 v̂bv̂e = −γ2(vb − w)(ve − w), (10)

which is different from the ad hoc expected γ2(vm−w)(vm−w).
Using Eq. (7) one can rewrite Eq. (10) as:

am = γ2(vb − w)2e−γ2∆r̂ = γ∗2(vb − w)2, (11)
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Fig. 10. Distribution of CME parameters in the n4v3-subset: a) initial radial distances Rb (bins ∆R = 1); b) radial distance range ∆R = Re −Rb;
c) mean radial distances Rm = (Re + Rb)/2; d) angular widths φ (bins ∆φ = 20◦); e) mean velocities vm (bins ∆vm = 100 km s−1); f) mean
accelerations am (bins ∆a = 5 m s−2); in the inset the central part of the distribution is presented (bins ∆a = 2 m s−2).

Fig. 11. Relation between different CME parameters in the
n4v3-subset: a) vm(Rm) – black dots and the dashed linear least squares
fit represent φ = 360◦ events. The φ < 360◦ events are depicted by
gray circles and full-line least squares fit. b) vm(φ); c) Rm(φ). In b) and
c) the φ = 360◦ events (crosses) are excluded from the fit.

where we abbreviated γ∗2 = γ2e−γ2∆r̂ . So, if one would take the
measured values am and vb (or equivalently vb ≈ v3 as done
in Sect. 4) to estimate γ∗2 utilizing Eq. (11), its value would be
smaller than the real value γ2 by the factor X = e−γ2∆r̂. Using
Eq. (8), the deviation X can be expressed as:

X = (γ2v̂b∆t + 1)−1 . (12)

For a given CME the deviation X depends on the initial ve-
locity and the time interval during which the kinematics was
measured, and this varies from one event to another.

Actually, if ∆t increases, Rm = Rb + ∆R/2 increases too,
which means that γ2 decreases (Sect. 4). Thus, the two effects
partly compensate each other. In Fig. 12b we show the devia-
tion X as a function of Rm. In evaluating X(Rm) we have used
w = w(Rm) as given by Eq. (3), and γ2 = γ2(Rm) estimated uti-
lizing the two scalings displayed in the bottom panel of Fig. 4b
(γ2 = 5.9 × 10−6R−2 and γ2 = 0.76 × 10−6R−0.98).

Note that in the considered approximation, in most of
events (4 < Rm < 15; see Appendix A) the value of γ∗2 is un-
derestimated for not more than 50% with respect to γ2.

Let us now consider the more realistic situation, where the
wind speed and density, as well as the dimensions and den-
sity of CME, depend on the radial distance, so w and γ2 are
functions of R. We presume that w(R) increases, whereas γ2(R)
decreases.

We performed a series of numerical simulations from
which we estimated am to determine how much the approxi-
mate value γ∗2(Rm) = am/(vb − w(Rm))2 differs from the true
γ2(Rm). Again we used the two γ2(R) scalings from the bottom
panel of Fig. 4b, combined with the solar wind model given
by Eq. (3). The results are illustrated by Fig. 12c, revealing a
complex situation. The deviation X is generally X < 1, but it
can also be X > 1, i.e., γ∗2 can be overestimated (see also the
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Fig. 12. a) Comparison of the a(v)-trajectory of an event moving in the
w = const. environment (bold-dotted arrow) with the one moving in
the solar wind where the density decreases and flow speed w increases
(bold arrow). The initial, mean and final velocities are denoted by b,
m, and e, respectively. b) The deviation X for the approximation γ2 =

const., w = const. c) The deviation X for the solar wind speed given by
Eq. (3) combined with γ2 = 0.76 × 10−6R−0.98 (black) and γ2 = 5.9 ×
10−6R−2 (gray). The successively thicker lines in b) and c) represent
v3 = 1000, v3 = 1500, and v3 = 2000 km s−1.

explanation of Fig. 12a). The later case is more pronounced for
larger values of the exponent βR in the γ(R) ∝ R−βR scaling.
When vm is considered instead of vb, the value of γ∗2 is always
overestimated. For this reason in the previous analysis (Sects. 3
and 4) we relied more on the velocity v3 than on vm. Note that
weak-acceleration events are not affected much by the choice
of v3 or vm.

Finally, we stress another important aspect of employing
the velocity v3. Considering what happens in the a–v graph
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Fig. 13. The fitted γ2(R, φ) surface obtained by using Eq. (13). In the
inset log-scale presentation is shown.

when the am(vm) data are replaced by am(v3), one finds that
the usage of v3 shifts the am > 0 events to lower velocities
(to the left in the graph), and am < 0 events to higher veloci-
ties (to the right). This would tend to decrease the slope of the
a–v correlation if only the drag force dominated events would
be present (see the explanation of Fig. 12a). However, a com-
pensating effect appears at large velocities where we find also
the events with large am > 0 (presumably those whose motion
is still governed by the propelling force). These events, which
tend to smear the correlation and decrease γ1,2, are shifted to
the left towards v0, which reduces their influence in the a(v) fit-
ting. This is a reason reason why the am(v3) relationship shows
higher correlation coefficients than am(vm) relationship and a
steeper slope γ1.

In conclusion, let us note that Eq. (10) provides another
possibility to estimate γ2(φ,R) scaling, different from that per-
formed in Sect. 4. Combining the observed values am, vb,
and ve, with the model values for the solar wind speed w(Rb)
and w(Re) as given by Eq. (3), one can estimate:

γ̃2 = − am

(vb − wb)|(ve − we)| (13)

for each event. Here we meet a problem if the vb ≈ wb events
are included – because of the small value in the denominator
the outcome becomes highly unreliable. So we excluded the
|vb −wb| < 50 km s−1 events. The remaining data are then fitted
in the γ̃2(R, φ) space using the function γ̃2(R, φ) = αφ−βφR−βR

(the plane in log-log-log presentation). The outcome is shown
in Fig. 13: the parameters obtained by the linear least squares
fit read α = 0.015 × 10−3 km−1, βφ = 0.42, and βR = 0.95. So,
the value of γ̃2 decreases with R and φ. Note that the slopes βφ
and βR are consistent with those shown in Figs. 4a and 4b.


